If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+6p-2=0
a = 3; b = 6; c = -2;
Δ = b2-4ac
Δ = 62-4·3·(-2)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{15}}{2*3}=\frac{-6-2\sqrt{15}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{15}}{2*3}=\frac{-6+2\sqrt{15}}{6} $
| 15x+18=32x+52 | | 5x+.65=15x+.45 | | -11.5p-18.1=-11.1p-12.62 | | -0.61x+0.41x=5.2 | | .4y+2=−13(8−12y) | | -11.4c=1.87-12.5c | | 2/5x+1=-19 | | 0.4(10x+20)=3.9(0.2x+5) | | -3y=-19-4y | | -4(2+3x)+11=3(1-4x) | | 4e+20= | | -4x=(-5) | | -18+19h=6+18h-13 | | 3(4x+5)=21x-9 | | (x+4)^(1/2)-4x=4 | | 1x=(-7) | | 19=3(x-2)+4 | | -5-4(3+6x)=30-24x | | y+19/4=5 | | 16x^2+31x-12=0 | | 16-1/2(4x+6)=x-20 | | 2/5x+1=-15 | | 7x-3(5-x)=1.8 | | 16.03+16.4b=11.7b-15.46 | | 6x+9x=10+5 | | 6(c+2)=-6(c-4) | | 11w-2=-20+10w | | 2=3x+6/5 | | 138+x+58+x=180 | | 10q=11q-15 | | -4(3x+5)=-20-12x | | 0.3(2x+6)-x=5(1+x) |